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states histogram (see Fig. 9) which has a width at
half-maximum of ~0.01 Ry or ~1.4 eV. This is nar-
rower than the experimentally resolved structure and
is in much better agreement with Eastman’s work than
suggested by his comparison with an extrapolated
value using the zirconium results of Loucks.

V. CONCLUSIONS

The fact that little experimental data are available
dictated the nature of this calculation. No attempt was
made to include the spin orbit or other relativistic
effects, and no effort was made to guarantee self-
consistency. It is almost certainly true that some of the
more subtle features of the Fermi surface will have to be
modified when experimental data become available. It
is hoped that this calculation will lead to an interest in

HYGH AND R. M. WELCH 1

the study of titanium, since it appears to be an excellent
candidate for displaying all the general features ex-
hibited by hcp metals.
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Lattice Dynamics of Yttrium at 295 K*
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Phonon-dispersion curves along the [1010], [1120], and [0001] symmetry directions of the hcp metal
yttrium have been measured by inelastic neutron scattering using the triple-axis neutron spectrometer
at the Ames Laboratory Research Reactor. The dispersion curves are not strikingly different from those of
other hcp metals with a similar ¢/a ratio. A careful search has been made for Kohn-type anomalies, and
evidence for two such anomalies has been obtained. A modified axially symmetric force-constant model
has been used to fit the phonon frequencies, and it has been found that although forces acting normally to
the basal plane are not large beyond first neighbors, forces acting parallel to the basal plane are long-ranged,
and interactions up to at least sixth neighbors have to be taken into account. The fitting has been done in
a linear manner using Fourier analyses of the dispersion curves and other linear constraints such as the
elastic constants. A frequency-distribution function has been calculated and used to calculate the specific
heat and anisotropic Debye-Waller factor. Good agreement is obtained on comparison with the experimental

data.

I. INTRODUCTION

VER the last few years, neutron-scattering
measurements of the phonon-dispersion curves of
several hcp metals have been reported, including
magnesium,? berylliumj?+4 zinc,’ and holmium.® Of
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national Atomic Energy Agency, Vienna, 1968), Vol. I, p. 215.

3R. E. Schmunk, R. M. Brugger, P. D. Randolph, and K. A.
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these, the first three are generally regarded as free-
electron-like in electronic structure. The measurements
reported in this paper were originally undertaken to
obtain detailed information about the lattice dynamics
of the rare-earth—-type metals, in view of the current
interest in the properties of these metals and the con-
siderable theoretical and experimental work being
carried out in this area. Yttrium is actually to be re-
garded as a prototype rare-earth metal since it does not
possess any f shells. However, its electronic structure”
is very similar to the rare earths, as far as the conduc-
tion electrons are concerned, and like them it crystallizes
in a hep structure with a ¢/e ratio close to the ideal.
The lattice constants for yttrium at room temperature
are a=3.6474 A, ¢=5.7306 A, and ¢/a=1.5711. In-
formation about the phonon spectra of the rare-earth—
type metals has since been obtained by the Brookhaven
group on holmium,® by the Oak Ridge group on holmium

7T. L. Loucks, Phys. Rev. 144, 504 (1966).
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and terbium,® and by the group at Ames on scandium.’
As expected, it turns out that all these phonon spectra
look very similar, reflecting the basic similarity in con-
duction electron-band structures and lattice structures.

Yttrium is a very suitable candidate for an exami-
nation of the phonon problem, since, unlike the other
rare-earth metals, the neutron scattering is free from
all types of magnetic-scattering effects, the coherent
cross section for thermal neutrons is reasonable and
the neutron absorption is small. In particular, it is an
obvious substance to look for effects due to the conduc-
tion electrons themselves on the phonon spectra, such
as Kohn-type anomalies, ' quite independent of effects
due to the magnetic f electrons in the rare earths. Such
effects have important implications in the theory of
the magnetic ordering in the heavy rare-earth metals,
since the well-known Ruderman-Kittel-Kasuya-Yosida
(RKKY) indirect exchange interaction is there trans-
mitted by a mechanism very similar to the ion-electron-
ion interaction which determines the phonon spectra.
While evidence was found of such effects in the phonon
spectrum of yttrium, they were rather small as dis-
cussed below.

A rather remarkable feature of the dispersion curves
is their basic similarity to those of the free-electron-like
hcp metals such as magnesium and beryllium with
similar ¢/a ratios, in spite of the rather different band
structure, including considerable directional isotropy
of the acoustic dispersion curves of both longitudinal
and transverse polarizations. In this respect, they are
rather different from the dispersion curves for zinc
which has a much larger ¢/a ratio. Although it is in
principle possible to calculate the dispersion curves for
yttrium from first principles starting from the band
structure,! it is a formidable task and we have chosen
for the present to make a convenient force-constant
analysis which should act essentially as an interpolation
scheme for reproducing the phonon-dispersion curves.
Even a Born—von Karman analysis for the hep structure
is very complicated because of the relatively low
symmetry of the structure compared to the cubic
structure. Such analyses have been made for mag-
nesium,?12714 beryllium,?*151 and zinc.’*> In order
to keep their equations linear, the authors have in
general restricted their number of force-constant
parameters and solved for them in terms of the elastic
constants and selected frequencies at symmetry points
in the Brillouin zone. In general, as discussed by

8 Private communication.

9 N. Wakabayashi and S. K. Sinha, Phys. Rev. (to be pub-
lished).

10 W. Kohn, Phys. Rev. Letters 2, 393 (1959).
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2 G. H. Begbie and M. Born, Proc. Roy. Soc. (London) A188,
179 (1946).
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1 M. F. Collins, Proc. Phys. Soc. (London) 80, 362 (1962).

15 R. E. DeWames, T. Wolfram, and G. W. Lehman, Phys. Rev.
138, A717 (1965).

16 J. A. Young and J. U. Koppel, Phys. Rev. 134, A1476 (1964).
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Raubenheimer and Gilat,'” this results in a fit which is
barely adequate along symmetry directions, and prob-
ably quite inadequate off-symmetry directions, as
witnessed by the fact that the elastic constant Ci3
calculated from these models is, in general, in consider-
able disagreement with experiment. The most straight-
forward method of improving the fit is to increase the
number of force constants and do a general nonlinear
least-squares fit to all the experimental data. This
method suffers from the usual defects of nonlinear
least-squares fitting with a large number of adjustable
parameters, namely poor convergence and no guarantee
that the values obtained are unique. An alternative
approach which is described in this paper is to make
full use of all the linear relations obtained from both
the elastic constants and a Fourier analysis of the data
as described in Sec. III. In this way, one can extend the
number of parameters needed to obtain a fit and yet
keep the problem linear. The measured symmetry-
direction branches of the dispersion curves alone do
not provide enough information in principle to deter-
mine all the force constants for a general-tensor-force
(GTF) model, and, hence, we have used the modified-
axially symmetric (MAS) model developed by De-
Wames ef al.,’ and obtained a reasonably good fit to
all the experimental data with a sixth neighbor model,
although further neighbors are probably necessary for
a much closer fit. We have used this model to calculate
a frequency spectrum and specific heats and Debye-
Waller factors for the yttrium lattice. The latter may be
useful in estimating Debye-Waller factors for the rare-
earth-type metals, as discussed in Sec. III, in view of
the similarity in dispersion curves. This would provide
more accurate Debye-Waller factors for use in inter-
preting the results of neutron-diffraction experiments
on the rare-earth metals than has hitherto been
available.

II. MEASUREMENTS

The measurements described here were carried out
on a single crystal of yttrium grown from a button of
crushed arc-melted yttrium metal by the method of
strain annealing. The volume of the crystal was about
4 cm?. The measurements were carried out on the
Mitsubishi triple-axis spectrometer at the ALRR
reactor. The incident energy was not variable for the
purposes of the “constant-Q” mode of operation, but
was changed between different sets of runs, for the
purposes of changing the balance between intensity and
resolution where required. Incident energies between
50 and 20 meV were used, the lower energies being
used for high-resolution scans. Most of the scans were
done using the neutron energy loss, i.e., phonon-
creation process, to study the dispersion curves. The
resolution function, as discussed by Cooper and
Nathans,’® was measured and used to determine the

171.. J. Raubenheimer and G. Gilat, Phys. Rev. 157, 586 (1967).
18 M. J. Cooper and R. Nathans, Acta Cryst. 23, 357 (1967).
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focusing conditionis for the transverse phonons. Oc-
casionally, in searching for anomalies on a longitudinal
phonon branch where high resolution was required,
it was found profitable to arrange for the neutron
momentum transfer vector Q not to be parallel to the
phonon wave vector q but to have a considerable
transverse component in such a way that the focusing
effect was achieved. Although this sacrifices some
over-all integrated intensity by virtue of the |Q-e|?
term in the cross section, it produces sharp and well-
defined peaks in the scattered-neutron groups.’® The
method cannot be used if there is a transverse phonon
branch very close in frequency to the longitudinal
branch one is studying. Crystals of zinc set to reflect
for the (0002) planes were used for the monochromator
and the analyzer. The crystals were treated by quench-
ing them in liquid nitrogen and squeezing them under
pressures of up to 3 ton/in.2 to increase their mosaic
spread. The procedure was optimized by continuing
until the integrated elastic peak from a vanadium
sample at the sample position reached a maximum.
This resulted in crystals of mosaic spreads of up to
0.85° and excellent reflectivities as monochromators.?
However, it was found that over a period of more than
a year the reflectivities of these crystals decreased
again somewhat and retreatment was necessary. The
collimations used between the source, monochromator,
sample, analyzer, and detector were about 40 min arc
throughout. The source flux was roughly 3X10%
n/cm? sec and at 50 meV the flux at the sample position
was measured by gold foil activation to be roughly
3.5X10% /cm? sec. Although the fast-neutron content
in the beam was high, no fast-neutron filters were
utilized in the interests of higher thermal fluxes.

The measurements were all carried out in the
“constant-Q”’ mode of operation,?® and some typical
phonon profiles are shown in Fig. 1. The data were
analyzed by fitting both the phonon peaks and the
background to a series of Gaussians on a uniform back-
ground. In this way, part of the contamination of the
phonon peaks due to other peaks, such as elastic
incoherent peaks, was approximately allowed for. In
order to remove possible errors due to asymmetry of
the peaks, the centroid of the neutron distribution
corresponding to the particular peak in question (i.e.,
after subtracting off the fitted background) was taken
as determining the peak position. In general, these
agreed to within 0.02 THz with the position of the fitted
Gaussian. The statistical errors in the peak positions
were typically 0.02-0.06 THz. All spectrometer angles

19 This technique has apparently also been used by the Uni-
versity of Michigan neutron-scattering group [G. Venkataraman
(private communication)].

2 S, W. Peterson, Argonne National Laboratory, Internal
Report.

2L B. N. Brockhouse, in Inelastic Scatiering of Neutrons in Solids
am{ léiqm'ds (International Atomic Energy Agency, Vienna, 1961),
p.- 11
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were set to the nearest 0.01°. No second-order correc-
tions due to finite instrumental resolution were applied
to the peak positions. Often, several equivalent measure-
ments of particular phonons were carried out under
different conditions, such as in seeking to establish
anomalies in a particular branch. In certain cases, there
was a systematic deviation in phonon frequencies
between different sets of runs, presumably due princi-
pally to resolution correction effects. In such cases, the
values for the best focused (i.e., narrowest) neutron
groups were adopted, so as to minimize such errors. In
addition to the purely statistical error in the peak
positions, the other main contribution to the errors
was due to uncertainty in the exact form of the back-
ground to be subtracted from the one-phonon peak,
even though these were approximately assumed to be
Gaussians. Quite often, spurious peaks due to second
order in the analyzer crystal were observed to con-
taminate the actual phonon peaks.

Table I gives a list of the final set of phonon fre-
quencies determined for the principal symmetry direc-
tions of the reciprocal lattice, together with estimated
statistical errors. Figure 2 shows a plot of the measured
dispersion curves together with fitted force constant
model curves to be discussed in Sec. ITI. It may be
seen that the acoustic branches are quite isotropic in
the sense that the TA|| and TAL modes propagating
along the [1010] direction are nearly degenerate, as
indicated also by the near equality of the elastic
constants Cy4 and % (C1—Ces) measured by Smith and
Gjevre.2 It should be noted that, by rotational in-
variance, the initial slope of the TA 1 mode should be
identical also to those of the TA L mode along [1120]
and the TA modes along [0001]. The longitudinal
branch along the [1010] direction also has an initial
slope which is only about 29, different from that along
the [0001] direction, and, in fact, the two dispersion
curves are also almost identical up to the zone boundary
along the [0001] direction. The lowest frequency
points measured on the acoustic branches are from 3
to 59 different than those predicted from the slopes
corresponding to the room-temperature elastic con-
stants, which is not inconsistent with experimental
errors and resolution correction effects.!® It should be
noted that the high degree of acoustic isotropy in
yttrium is probably fortuitously good at room tempera-
ture, since Smith and Gjevre’s data show increasing
anisotropy of the elastic moduli at lower temperatures.
It does, however, reflect the general behavior of most
hexagonal metals with a ¢/a ratio close to the ideal hcp
ratio,”™ and in marked contrast to that of zinc, as
noted also by Leake ef al. for holmium. As in beryllium
and magnesium, the LA, LO, TO||, and TOL modes
are almost all degenerate at the symmetry point M.
This circumstance makes an uncontaminated determi-
nation of these individual modes separately quite

22 J, F. Smith and J. A. Gjevre, J. Appl. Phys. 31, 645 (1960).
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TasLE 1. Phonon frequencies in yttrium at 295°K.
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difficult, as may also be seen from inelastic structure
factor considerations,! and is the reason why relatively
few points have been obtained for the TO|| branch.

III. FORCE-CONSTANT ANALYSIS

As is well known,? the Born-von Ké&rmén theory
introduces phenomenological force-constant matrices
®us(l,kk") between an atom of basic type & in the origin
unit cell and an atom of basis type &’ in the unit cell at
a lattice vector 1 from the origin unit cell. In terms of
this completely GTF model, the dynamical matrix
whose eigenvalues and eigenvectors are the squares of
the phonon frequencies and the phonon polarization
vectors, respectively, is given by

Daﬂ(qakkl) 22 Daﬁ(l’kk’)g_iQ'l’ (1)
1
where
1
Dap(Lkk) = ————Pas(LE') )
MM g

where m;, is the mass of the atom of type k. The most
general and complete formulation of the GTF model
for hcp crystals has been given by Czachor,* and we
shall adopt his notation in what follows. In this nota-
tion, k=1 denotes the sublattice containing the atom
situated at the origin of the unit cell and k=2 denotes
the sublattice containing the atom in the origin unit
cell at the position

r=ja;+3a,+3as,

a;, a;, and a; being the primitive hexagonal-lattice
vectors. We have

1re f e
Dos(L11)=— —l:f b d:| (3a)
MLe d ¢
and

(112) =D (1.21) 1[A £ g] @3b)
Das(112) = Dus(121) = — —| F ,
? f MLE D G

where the subscript 1 is understood for the force con-
stants and M is the mass of an atom of the lattice.
Strictly speaking, the lack of inversion symmetry
without a nonprimitive translation complicates the
analysis considerably since D,s(1,22) is not equal to
D.s(1,11). Hence, Czachor splits the force constants
between like atoms (denoted by the lower-case letters
a, b, etc.) into “symmetric” and “antisymmetric”
independent force constants, i.e.,
Ddﬂ(]';ll)=Daﬁs(l;11)+Ddﬂa(l>11): (4)
such that
Dop(1,11)+Dop(1,22) = Dog*(1,22) — Do2(1,22) . (5)
2 M. Born and K. Huang, Dynamical Theory of Cryatal Lattices
(Oxford University Press, Fair Lawn, N. J., 1954).
2 A, Czachor, in Inelastic Scattering of Neutrons in Solids and

Liquids (International Atomic Energy Agency, Vienna, 1965),
Vol. I, p. 181.
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The antisymmetric force constants do not appear in
the dynamical matrix for the special modes along the
symmetry directions which we have measured, and,
hence, are not directly determinable. Fortunately, the
MAS model of DeWames et al. simplifies the analysis
by putting all of these equal to zero, so that D,g(1,11)
=D,(1,22), which is physically reasonable in the case
that the force constant between atoms is a function
only of their distance apart. Certain of the off-diagonal
elements of the D.s(l,k%k’) also do not appear in the
expressions for the special modes measured. However,
the MAS model enables one to express them in terms of
the diagonal elements alone, leaving, in general, only
three independent force constants per neighbor atom.
In the Appendix, we list the coordinates of the typical
atoms in each successive ring of neighbors to which our
force constants refer, together with the restrictions
imposed by crystalline symmetry and the additional
restrictions imposed by the MAS model, and finally the
independent force constant parameters for each atom.
For detailed discussions and other applications of the
MAS model, the reader is referred to the papers of
DeWames et al.'® and Raubenheimer and Gilat.' It
may be seen that a fourth-neighbor model involves 11
independent parameters. It was found that solving for
these parameters in terms of suitably chosen frequencies
at symmetry points and the elastic constants was not
satisfactory in the sense that it was not possible to get
a good fit to the dispersion curves and simultaneously
describe correctly the behavior in the elastic limit, i.e.,
either satisfy the rotational invariance condition (dis-
cussed below) or fit the elastic constant Cy3, describing
the elastic behavior in off-symmetry directions. A
sixth-neighbor model involves 17 independent param-
eters, but a least-squares fitting procedure proved to be
unsatisfactory because of convergence difficulties and
problems in ensuring that the parameters were unique.

In order to avoid these difficulties, the following
procedure was adopted. It is well known for monatomic
crystals, e.g., cubic crystals, that a Fourier analysis of
w?2(q) for symmetry direction modes yields information
both about the range of the forces as well as a number
of linear relations among the interatomic force con-
stants.?® For the hcp lattice, the situation is more
complex, but the Fourier analysis of w?(ILA,LO) and
«?(TA,TO) along the T'4 direction (with the double-
zone scheme convention adopted so that the (ILA,LO)
branches are regarded as one ‘“‘acoustic” branch and
so on), of w*(TAL) and w?(TOL) along the TKM
direction, and of the sums of w? for branches of like
symmetry along the I'M direction still yield coefficients
which are linear combinations of the interatomic force
constants. The results of such an analysis are shown
in Table II, where we show the Fourier coefficients
fitted consistent with an interaction up to sixth neigh-

% A. J. E. Foreman and W. M. Lomer, Proc. Phys. Soc.
(London) 70, 1143 (1957).
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TasLE II. The notation for the Fourier coefficients is explained in
the Appendix. Units are in 10¢ dyn/cm.

Minimum
number
Fourier needed
Function coefficient Value for fit
T'A direction:
MWL AY? P, 6.2984 1
P, —0.0078 1
Me(T A)? P 2.1462 1
P, —0.0357 1
T'KM direction:
mw?(TA L) Py 4.6042 3
P, —0.04689 3
P; 0.06244 3
me?(TOL) Py 8.8534 4
P, 4.3509 4
P, —0.7022 4
Py —0.1748 4
T'M direction:
mw?(LA) 4+maw?(LO) Py 12.412 >3
Py —7.6148 >3
P, —0.7800 >3
maw?(TA L) +mw?(TOL) Py 13.7332 3
Py —0.7740 3
Py —0.4104 3
ma? (TA|)+me?(TO||) Py 8.3936 2
Py —4.2396 2
P, 0.03088 2

bors, together with the minimum number of coefficients
needed to obtain a good fit for each branch. In the
Appendix, we list these coefficients as linear combina-
tions of interatomic force constants out to sixth
neighbors. An inspection of this list and Table II
shows that, as far as coefficients involving the zz-
component force constants (i.e., the g’s and G’s), a
third-neighbor model would represent these coefficients
reasonably well, but that the basal plane interactions
(i.e., the a’s, &’s, A’s, and B’s) must be included up to
at least sixth neighbors. (In fact, the analysis of the
longitudinal T'M branches shows that, strictly speaking,
Fourier coefficients involving even longer-range inter-
actions are present.) Using the Fourier coefficients listed
in Table II, the measured elastic moduli, (C11—Ces),
Css, Cus, (C13+Cus), and the expressions for the fre-
quencies of the LA, LO, TA||, and TO|| modes at M,
we have 28 linear relations between the 17 force-
constant parameters (as listed in the Appendix) and
have determined the latter by a linear least-squares
fitting procedure. However, although a good fit was
obtained, such a fit did not give a good representation
of the elastic constant Cy;, which is not a linear combina-
tion of force constants. This was traced to the behavior
of the force constants A1, Bi, As, Bs, A3, Bs. In order
to get a final model, therefore, we chose the remaining
force constants as determined from the linear least-
squares fit, and solved for A1, B1, A s, Bs, A3, B3 in terms
of (414 Bi+Ay+By+2A43+2B;) as determined from
the same fit, (C11—Ces), (C13+Cas), the frequencies of
the LA and TO| modes at M, and C11. As may be seen
from the table of linear relations in the appendix, such
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TaBrLE III. Force constants for the sixth-neighbor MAS

model. Units are in dyn/cm.

Neighbor GTF notation MAS notation

1 A= 45131 8= 2047.2
B;= 4188 e, =—1628.4
Gi= 11518.7 €1, = —3640.7

2 a= 3986.7 ay= 10124.0
b= 9048.7 Bag= 1455.7
o= 510.36 Ba=  510.36

3 A,= 1211.5 83=— 273.15
By=—3159.0 &= 1211.5
Ga=— 512,16 e, = 1510.6

4 ax=— 1783 Baz=— 1783
ge=— 83.0 as+B=— 83.0

5 A= 9280 85= 39.31
B;= 1085.2 .=  456.3
Ga =— 29095 €5 = — 5820

6 as=— 93.00 ag= 18559
by= 1762.9 Bez=—93.00
83= 592.7 ﬁsz = 592.7

a procedure cannot destroy the goodness of fit for any
of the coefficients listed there except for possibly the
frequencies of the LO and TA|| modes at M. The force
constants so obtained are listed in Table IIT together
with the equivalent force constants in the MAS
notation.’® Figure 2 shows the fit obtained to the
dispersion curves with such a model, and it may be
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seen that by and large the agreement is fairly good,
except for the TA branches along I'M where the
maximum discrepancy is 15%,. The fit to all the elastic
constants ensures that the model has the right behavior
at small wave vector for all directions including off-
symmetry directions. Another test of the model is to
see whether it satisfies the condition of rotational
invariance,? which ensures that the initial slope of the
TA_L mode along T'M is equal to that of the TA mode
along T'A. This is expressed as a relation between the
force constants in the Appendix. The model obtained by
us satisfies this condition to within 29,

Using this sixth-neighbor MAS model and the
HCPGNU program developed by Raubenheimer and
Gilat,” we have calculated the frequency spectrum of the
yttrium lattice as is shown in Fig. 3. Some of the critical
points corresponding to symmetry direction measure-
ments are also indicated on this figure. The spectrum
resembles qualitatively that of magnesium as calculated
by Gilat and Raubenheimer using the fourth-neighbor
model of Tyengar et al.! but there are significant differ-
ences, showing that our sixth-neighbor model predicts
rather different behavior in the off-symmetry directions
even though the symmetry direction dispersion curves
in the two metals are rather similar. From our fre-
quency spectrum, we have calculated a lattice specific
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Fi1c. 3. Frequency spectrum g(») for yttrium showing critical points arising from symmetry directions only.
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Fic. 4. Plot of Debye temperature versus 7 for yttrium calculated from g(») shown in Fig. 3, together with experimental data of
Cetas, Holste, and Swenson and of Jennings, Miller, and Spedding. The full circles represent data of Cetas et al. fitted by forcing 6(0)
to be consistent with the low-temperature elastic constants. The open circles represent their data fitted with no such restriction, and

the triangles represent the data of Jennings ef al.

heat and used it to obtain a Debye © as a function of
temperature for yttrium. This is shown in Fig. 4
together with the experimental data of Cetas et al.28
for low temperatures and of Jennings et al.?” for higher
temperatures. It may be seen that, in general, our
calculations are in good agreement with these data
and reproduce the dip in the ©-T curve very well,
considering the fact that our calculations are based
on a room-temperature spectrum that will change
slightly at lower temperatures and that there are
difficulties in estimating the appropriate parameters
to convert the experimentally measured Cp to a lattice
Debye ©. The low temperature data of Cetas ef al. is
slightly ambiguous, owing to the fact that they have
eliminated other specific heat contributions in two
different ways resulting in two different sets of ©’s at
very low temperatures. Their lower curve is in agree-
ment with the © calculated from the low-temperature

26 T. C. Cetas, J. C. Holste, and C. A. Swenson, Phys. Rev.
182, 679 (1969).

27 L. D. Jennings, R. E. Miller, and F. H. Spedding, J. Chem.
Phys. 33, 1849 (1960).

elastic constants of Smith and Gjevre.?? We have found
that any force model which does not reproduce the
elastic constant Cy3 gives a ©-T curve with a completely
wrong behavior at very low temperatures.

We have also used our model to calculate the Debye-
Waller factor for yttrium. For an hcp crystal, this may
be written as

EXp(—ZVV)= exp{— (flz/ZM)I:(Kl12/k3®0)G|1(T/®0)
+ (K2/ks00)G.(T/00) 1},  (6)

where M is the atomic mass, (2K )) and (K,) are the
components of momentum transfer parallel and perpen-
dicular to the basal plane, respectively, and ® is some
reference Debye temperature which we shall take to be
the © at 0°K. The point of writing ¢~2% in the form (6)
is that since the frequencies of the rare-earth metals
including yttrium approximately scale in the ratio of
their Og’s, Gii(T/®,) and G.(T/BO,) may be taken to be
universal dimensionless functions from which one may
calculate ¢72% for any of the metals in this series. This
may be found to be useful in certain neutron-diffraction
experiments where occasionally accurate anisotropic
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TABLE IV. The dimensionless functions G;;(7/®,) and GL(T/©y)
appearing in Eq. (6) for the Debye-Waller factor.

T/6o Gu(T/8y) GL(T/6y)
0.05 1.883;5 1.920
0.10 3.873 3.956
0.15 6.056 6.209
0.20 8.504 8.752
0.25 11.263 11.633
0.3 14.364 14.881
0.35 17.821 18.507
0.4 21.647 22.531
0.45 25.862 26.969
0.5 30.474 31.828
0.6 40.908 42.832
0.7 52.982 55.575
0.8 6€.717 70.077
0.9 82.126 86.353
1.0 99.218 104.41
1.2 138.48 145.90
14 184.54 194.59
1.6 237.42 250.50
1.8 296.43 312.66
2.0 361.88 381.97

Debye-Waller factors are needed. Table IV gives a
tabulation of the functions G, and G, for certain values

of (T/0Oy).

IV. ELECTRON-PHONON INTERACTION
IN YTTRIUM

The conduction-electron band structure of yttrium
is known to be transition-metal-like, in the sense that
it consists of overlapping s-like and d-like bands.”
Hence, a simple pseudopotential approach to the
electron-phonon interaction as is used in the free-
electronlike metals is inapplicable. The formulation of
the electron-phonon interaction and the electronic
contribution to the dynamical matrix for transitionlike
metals has been given by Sinha.!* A detailed calculation
for yttrium however would require a knowledge of the
wave functions and energy levels for a large number of
bands which are not yet available. However, the
formulation does show that the electronic contribution
to the dynamical matrix is governed by terms having
the usual second-order perturbation form

n()—n(k)

| Vi |2, (7
Ey—E

kK’

where Vir is the electron-phonon matrix element
between states k and k&’ with occupation numbers % (%),
n(k’) and energies Ey, Ex. For phonon wave vector q,
the Bloch wave vectors of the two states are related by

K=k+tq. (8)

For more than one atom per unit cell, V includes a
structure factor which, in the case of the hcp lattice,
imposes the extra selection rule that Eq. (8) is to be
assumed only for wave vectors in the double-zone
scheme (i.e., with the Brillouin zone considered to be
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twice as large along the ¢ axis as the normal Brillouin
zone). In this scheme, phonon wave vectors for the
acoustic branches along I'4 have q’s between I' and 4
and those for optic branches have q’s between 4 and T’
in the second zone.

For a transition across the Fermi surface, the expres-
sion (7) becomes infinite, but this infinity is in general
cancelled by neighboring contributions so that a
principal-value-type sum remains. An exception is
where q spans an extremal dimension of the Fermi
surface, in which case one gets singularities in the q
dependence of Eq. (7) for that q resulting in the well-
known Kohn-type anomaliesin the dispersion curves.10:28
The nature of these singularities depends on the
geometry of the Fermi surface in this region and can
range from an actual infinity in (7) to an infinity in its
derivative with respect to q. If, on the other hand, one
does not have an actual extremum but rather a region
of Fermi surface consisting of two pieces of relatively
large area separated by approximately the same q, i.e.,
the so-called ‘“nested” Fermi surfaces,?® then it is
possible for the expression (7) to build up into a large
peak without an actual singularity. Figure 5 illustrates
a plot of the function X(q) defined as

n(k)—n(k-+q)

Ex—Eyq

X@=X2 9

for yttrium where only the third and fourth bands
which contribute to the Fermi surface were taken into
account in the sum. This curve is from the work of
Gupta et al.* It shows three broad peaks (two of which
are not resolved) at q=(0,0,{)2r/c ({=0.375, 0.583,
and 0.75 approximately). These peaks may be corre-
lated with various nested portions of the Fermi surface
of yttrium along the ¢ axis, as calculated by Loucks.”
One may expect that the peaks in X(q) might correspond
to dips in the dispersion curves particularly for the
longitudinal branches along the I'4 direction, even
though the matrix elements have been omitted in Eq.
(9) and not all bands summed over. Yttrium is not a
superconductor so that the electron-phonon interaction
is probably not very large, and, hence, the magnitude
of the effect is expected to be small. Accordingly, a very
careful search was made for such effects along the LA
and LO branches of the dispersion curve along T'4
including measurements for a large number of closely
spaced q values and repeated sets of runs for the same
q from different reciprocal lattice points, using high
resolution and focusing where possible. The results
indicate that the A(LA) branch is quite smooth all the
way to the zone boundary but that the A(LO) branch
does seem to have two sharp dips at the positions
(0,0,0.625)27/c and (0,0,0.775)2w /¢ in the double-zone

28 L. M. Roth, H. J. Zeiger, and T. A. Kaplan, Phys. Rev. 149,
519 (1966).

2 T, L. Loucks, Int. J. Quantum Chem. 118, 285 (1968).
% R. P. Gupta, S. H. Liu, and S. K. Sinha (unpublished).
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F16. 5. The function x(Q) for yttrium calculated using Eq. (9)
and the approximations mentioned in the text, in the double-zone
representation.

representation. Even though the magnitude of these
dips is comparable with the over-all experimental error,
the evidence for them is obtained from the fact that
the dispersion curve for this branch as measured from
each independent set of runs showed these same two
dips even though the curves obtained from each set
were shifted up or down relative to each other because
of systematic error. We feel that these two points, then,
are likely candidates for the points corresponding to
the second and third peaks in Fig. 5. The small dis-
crepancies in positions may be due to the effects of the
matrix elements or to errors in the Fermi surface
dimensions. There appear to be a couple of other
anomalies in the dispersion curves such as along the
TA and TO branches along I'4 and the LO branch
along I'M. However, it is difficult to exclude the possi-
bility of contamination of these branches by peaks
resulting from neighboring branches of the dispersion
curve and we have not attempted to establish any of
these in the same way as for the A(LO) and A(LA)
branches. :

The lack of an anomaly due to the biggest peak in
x(q) at (0,0,0.375)2w/c is disturbing in view of the fact
that the existence of this peak can be correlated with
the magnetic ordering in dilute rare-earth alloys with
yttrium.?"% The neutron-diffraction results of Koehler
et al.® indicate a q value for the magnetic ordering wave
vector in these alloys in the extremely dilute rare-earth
limit of (0,0,0.283)2x/c, which is close to the q value of
the first peak in X(q). The argument is qualitative since
again the X(q) which determines the magnetic ordering
should have the appropriate s-f exchange matrix
elements in the expression in Eq. (9).* The complete

31 S, C. Keeton and T. L. Loucks, Phys. Rev. 168, 672 (1968).

2 W. E. Evenson and S. H. Liu, Phys. Rev. 178, 783 (1969).

# W. C. Koehler, H. R. Child, E. O. Wollan, and J. W. Cable,
J. Appl. Phys. 34, 1335 (1963).
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absence of a corresponding anomaly in the phonon
spectrum may be ascribed either to cancellation of this
effect by other terms in the total electronic contribution
to the dynamical matrix or to the fact that the ap-
propriate nesting feature in the Fermi surface yttrium
is not quite as pronounced as the calculations indicate.
It should be noted that a similar dip has been seen in
the magnon spectrum of an Hog.1Tho s alloy by Mgller
et al’* corresponding to the optical branch along I'4,
but not at the q corresponding to the magnetic ordering
wave vector, even though Mgller ef al. have shown that
the results are consistent with having a peak in X(Q)
between I' and 4.

V. SUMMARY AND DISCUSSION

We have presented measurements of the phonon
dispersion relations in yttrium at 295 K utilizing the
technique of coherent inelastic scattering of thermal
neutrons. The measurements are restricted to the
principal symmetry modes, but even these have
necessitated a complicated force-constant model in
order to obtain a good fit. We have developed a tech-
nique of obtaining the parameters of a sixth-neighbor
MAS model linearly from a Fourier analysis of the
dispersion curves together with the values of the
measured elastic constants. The force constants so
obtained are unique, and we believe the model repre-
sents the dispersion curves over the whole Brillouin
zone reasonably well, as the frequency spectrum calcu-
lated from it yields a ©-7 curve in reasonably good
agreement with the experiment. We believe this repre-
sents one of the most detailed force-constant analyses
reported on an hcp metal and in particular on a rare-
earth-type metal. Sundstrom?® has reported a detailed
application of a third-neighbor axially symmetric model
to the heavy rare-earth metals by fitting the measured
elastic constants. As she had no access to phonon
dispersion curve measurements, the agreement of her
model with the details of the phonon spectra is un-
certain. Her calculated frequency spectrum does not
look very similar to the one calculated by us for
yttrium. Very recently, Lahteenkorva’® has reported
similar model calculations for yttrium. We have also
presented a calculation of the Debye-Waller factor
which may be used to obtain realistic Debye-Waller
factors for the rare-earth metals with the use of ap-
propriate scaling factors.

We have searched quite hard for evidence of Fermi-
surface effects manifested through the electron-phonon
interaction. Such effects have proved to be rather
disappointingly small indicating that the electron-
phonon interaction is not particularly strong in this
metal. A large anomaly in the A(LA) branch predicted

3¢ H. Bjerrum Mgller, J. C. G. Houmann, and A. R. Mackin-
tosh, Phys. Rev. Letters 19, 312 (1967).

3 Lorna Sundstrém, Ann. Acad. Sci. Fennicae A VI, 280 (1968).

3 E. E. Lahteenkorva (private communication).
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by theoretical calculations of the generalized suscepti-
bility function has not been observed indicating that
the magnitude of the peak in X(q) may not be as large
as the calculations suggest. It is interesting to observe
the behavior of the fraces of our fitted force constant
matrices [i.e., the quantities (a+b+g) or (4+B+G)]
as a function of neighbor distance. It is well known?25.57
that the trace of a force constant matrix reflects only
the non-Coulombic contributions to the interactions
associated with that particular neighbor, i.e., forces
due to the ion-electron-ion interaction only. The traces
of the force-constant matrices in real space may be
viewed accordingly as a Fourier representation of the
sum rule for ) ;w?(q) proposed by Rosenstock.’
Figure 6 shows the trace as a function of neighbor
distance. It may be seen that the points seem to lie on
a smooth curve exhibiting oscillatory behavior. This is
probably a reflection of the Friedel-type oscillations
such as are also seen in the simple metals.?® It may also
be noticed that there is almost no interaction between
the origin atom and its fourth neighbors at positions
(0, 0, ==c). This may be interpreted either as indicating

SINHA, BRUN, MUHLESTEIN, AND SAKURAI 1

directional bonding between atoms preferentially off
the ¢ axis, i.e., lack of electron orbitals directed along
the ¢ axis if one crudely thinks of the d electrons in
terms of the linear-combination-of-atomic-orbitals wave
functions, or simply as due to the fact that the ion-
electron-ion interaction is near zero for that particular
distance.

It is obvious that a calculation taking the conduc-
tion electrons into account properly is required for this
type of metal. Models taking the electron gas into
account phenomenologically®® or by making approxi-
mations appropriate to free electrons and using pseudo-
potential theory are not expected to work in this case,
and are not even altogether satisfactory for the simple
hcp metals.®+4 Gupta’s® calculations for yttrium yield a
disagreement of 15-209, with experiment. Phenomeno-
logical models including angular forces®* may give
better agreement with fewer parameters.
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APPENDIX

We list below the coordinates of the typical atoms
in each neighbor ring to which the force-constant
matrices, as defined generally in Egs. (3), are assumed
to refer to. The atom at the origin is assumed to belong
to sublattice k=1. A Cartesian coordinate system is
chosen with the x axis along the a axis of the crystal
and the z axis along the ¢ axis.

Neighbors on Sublattice k=1

Restrictions imposed by Further MAS Independent
Neighbor Coordinates crystal symmetry restrictions parameters
2nd (34,3V34,0) di=e1=0; fi=—3V3(a1—b1) All antisymmetric force a1, b1, &1
constants vanish
4th (0,0,¢c) do=e3= f3=0; bo=a- asz, g2
6th (0,\/3(1,0) di=e3=f3=0 as, bs, g3

3 H. B. Rosenstock, Phys. Rev. 129, 1959 (1963).
3 S. H. Koenig, Phys. Rev. 135, A1693 (1964).
#® R. P. Gupta and B. Dayal, Phys. Status Solidi 8, 115 (1965).

#V. C. Sahni and G. Venkataraman, Phys. Rev. 185, 1002 (1969).

4 A, Czachor, Phys. Status Solidi 29, 423 (1968).

2 R. P. Gupta, Phys. Status Solidi 20, 291 (1967) ; and (private communication).

4Y. P. Varshni and P. S. Yuen, Phys. Rev. 174, 766 (1968).
#“ E. A. Metzbower, Phys. Rev. 177, 1139 (1969).
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Neighbors on Sublattice k=2

Restrictions imposed by

Neighbor Coordinates crystal symmetry
1st (3e,8/2V3 5¢) E1=V3Dy; F1=3V3(4:1—By)
3rd (0,2e¢/V3,5¢) Ey=F,=0
Sth (a,(2/V3)a,3¢) None

where y=c¢/a. In terms of the above parameters, we
write down below the relations between the Fourier
coefficients and the elastic constants on one side and the
force constants up to sixth neighbors on the other. The
notation P;(LA) will indicate the first Fourier coeffi-
cient of Mw? for an LA branch, for instance, whereas
Po(LA+10O) will indicate the zeroth Fourier coefficient
of Mwia>+Mwiro?, i.e., the constant term. Along the
I'4 direction, the double-zone representation is assumed
so that the (LA,LO) branches unfolded are assumed to
form one LA branch, and similarly for the (TA,TO)
branches.

T'4 direction:

P(LA)=6G1+6G2+12Gs,

Py(LA)=12g,,
Py(TA)=34,+3B1+34s+3Bs+645+6Bs,
Py(TA)=2a,.

TKM direction:
P(TA1)=4g1+4G1+4Gs,

Py(TA L)=2g1+4G>+4Gs,
P3(TAL)=4gs+4Gs,
Po(TOL)=06g1+4gs+8G1+8G+12Gs,
P(TOL)=—4g114G114Gs,
Py(TOL)=—2g,+4G-+4Gs,
P3(TOL)=—4gs+4Gs.

T'M direction:
Po(TAL+TOL)=28g:1+12¢:+12G1+12G>+24Gs,
P (TAL+TOL)=—8g:—8¢s,
Py(TAL+TOL)=—4gs,

+6By+1243+12B;3,

Pl (TA”+TO”) = — 801— 2(13— 6[)3 )
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Independent
MAS restrictions parameters
Dy =3V3v(41—By) 41, B1, G
D:=3V3v(By—A>) Az, B, G,
F3=2V3(Bs—A3); Es=3%v(Bs—43); As, B, Gy

Dy=3vF3

Po(TA|+TO|)) = —4as,
Po(LA+L0) = 851+ 6as-+6bs+ 641+ 6B164,
+6Ba+1243+12B;,
Py(LA+LO)= —8b,— 6as— 263,
Py(LA+L0O)= —4b3.
Elastic constants:
2V3¢(C11—Cg)= —12a1+12b;— 18035+ 185+ 44,4
—4B,—84,+8B,
—19643+1968;,
a(C13+Cu)/(V3y)=24,—2B;— A+ B,
—14A454148;,
V3a?Cs3/c=4gs+ 3G+ 3G+ 6Gs,
¢V3C14/2=3g1+9g3+G1+4Go+14Gs.
Frequencies at M :

MwLA 1.0)2 = 8b1+6as+2bs+8B1-+124 34483,
MwLo LA = 81+ 6as+ 203464 1,— 2B+ 64,
+6B,+8Bs,
mwronran’=8ar+2as+4-6bs+841+443+12B;,
mwTAH(TOH)2= 8a1+2a346b3—24 1681464,
+6B,+843.

There is no a priori way of deciding which expression
should refer to the mw?(LA) at M or which to the
mw*(LO), since they are obtained as

(8b1+6as+2bs+3A4143B14 342+ 3Bs+ 645+ 6B3)
=+ |341—5B1+ 345+ 3By —645+2B3]
and similarly for mw?(TAl|) and mw?(TO||) at M. We
have found the order of the expressions given above
(where the expression refers to the modes listed outside
parentheses) to be consistent with our data.
Finally, the rotational invariance condition is given as

(v?/4)[4axt-4bs+3(A 1+ Bi+ Ao+ By+-245+42B5) ]
= 3g1+ 9g3+G14-4G2+-14Gs.



